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Problem Statement

e Typical state-of-the-art architectures for 3D generative shape modelling
using standard CNNs and GANSs are poor in terms of visual quality.

e They exhibit discontinuous and overly smoothed surfaces, provide low
resolution outputs and are susceptible to irreqgularities in training data.

e CNNs learn voxel distributions over a volume, rather than the shape
boundary itself

The Solution

e Implicit Fields used in Decoder feeds the point coordinates along with
shape feature vector to determine whether a certain point lies on the
inside or the outside, relative to the shape.

e The method allows to learn shape boundaries and output at multiple
resolutions, irrespective of the resolution of the training data.

e This shape aware network produces shapes of higher visual quality on
interpolation through latent GANs




Our Next
Steps:

This is the procedure we followed
while implementing and
understanding the project.

Understanding n

the Paper

Knowledge of network
structures, definitions, and
purpose.

Data Gathering
and Prep

Preparing input to AE and GAN.
Sampling from HSP dataset

Implementation

of AE

Implementation of the CNN
Auto-encoder

n Implementatio

n of Decoder

IM-NET decoder unique to the
paper is implemented

Implementation

of GAN

GAN to demonstrate generation
of models based on input
models.

Comparison of
Results

Qualitatively compare results of
our model with
implementations and outputs
of other models.

Scope of Work

Our implicit field decoder,
IM-NET, can be embedded into
different shape analysis and
synthesis frameworks to support
various applications.

For our project, we demonstrate
auto-encoding and generation of
3D objects or shape generation.

For auto-encoding 3D shapes, we
used a 3D CNN as encoder to
extract 128-dimensional features
from 64x64x64 voxel models.
For 3D shape generation, we
employed latent-GANs on feature
vectors learned by a 3D

autoencoder.



Major Definitions

A look through of definitions of terms used in the report.

voxel

implicit
surface

iso-surface

A pixel is a 2-dimensional Raster graphic, therefore having the
values of width and length, with colour placed inside the
coordinate. A voxel is a raster graphic on a 3-dimensional grid,
with the values of length, width and depth. It also contains
multiple scalar values such as opacity, color and density.

Implicit surfaces are actually
explicit volumes they explicitly
define what is the inside and
outside of the object.

Consider the function which
takes a 3D point (x,y,z) as input
and returns a single value. This ik 0 are points outside the object
value tells us explicitly if we filx,y.z) <0  are points inside the object
are outside or inside the

volume. f(x,¥,z) = 0 are points on the surface
However, explicit surfaces
directly extract points on the
surface. Eg: A function takes in
input parameters (u,v) and
returns a point (x,y,z) directly
on the surface.

An isosurface is a three-dimensional surface that represents
points of a constant value within a volume of space. Thus for
our purpose, the object we need to construct has a zero I1SO-
surface.

A mesh surface can be reconstructed by finding the zero-

isosurface of the implicit field.



Data Preparation

e We need a point value cloud for the training of our implicit decoder.

e For 3D shapes, to get voxel models in different resolutions (16x16x16 to
128x128x128), we sample points on each resolution in order to train the
model progressively.

e However, a naive sampling would imply taking the center of each voxel
and thus produce n points in each dimension ie, nxnxn points.

e We aim to get nxn points and thus sample more points closer to the shape
surfaces and neglect points far away.

e To compensate for a density change, we assigned weights of all sampled
points to 1, because we want the model to pay more attention to the
surface and allow small errors in the void area.

e Sample points which are within 3 voxel (in all x, y, z directions) from shape
boundaries are taken. If the number of sampled points does not exceed the
limit, randomly sample more points up to a limit.

e |

| |




Dataset Sample

A rifle dataset image sample at different resolutions and visualized at 3 axes
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Decoder: IM-NET

Used instead of CNN-decoder

The loss function is a weighted mean squared error between ground truth labels
and predicted labels of each point. Taking S as sampled set of points:
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e |n a typical application setup, our decoder, which is coined IM-NET, would follow
an encoder which outputs the shape feature vectors and then return an implicit
field to define an output shape.

e The skip connections (copy and concatenate) in the model can make the learning
progress faster in the experiments. They can be removed when the feature vector
is too long, so as to prevent the model from becoming too large.

e The implicit field decoder, IM-NET, can be embedded into different shape
analysis and synthesis frameworks to support various applications.
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Encoder:

e For auto-encoding 3D shapes, we used a 3D CNN as encoder to extract 128-
dimensional features from 64x64x64 voxel models. We adopt progressive
training techniques, to first train the model on 16x16x16 resolution data, then
increase the resolution gradually.

e Note: Higher resolution models can be trained with pre-trained weights on low-
res data. In experiments, progressive training can stabilize training process and

reduce training time significantly. n



IM-NET: Novel Features

Properties which impact the visual quality of generated shapes.

¢ Resolution: Decoder output can be samples at any resolution and thus
not hindered by the resolution of the training samples. In our case, we
sampled the output shapes at 512x512x512 or 256x256x256
resolution and rendered after Marching Cubes.

e Properties Learned: Since point coordinates are also concatenated
with 128-feature vector, the network learns the inside/outside status
of any point relative to a shape. In contrast, a CNN network predicts
possibility of each pixel to be on/off relative to extent of bounding
volume of a shape.

® GANs: IM-NET learns shape boundaries while CNN learns voxel
distributions over a volume. CNN computes voxels as weighted
averages, where the kernel windows are not “shape-aware.” Thus, IM-
NET is particularly useful in case of GANs as shape evolution is a direct
result of changing the assignments of point coordinates to their
inside/outside status.

e Continuity: The perception of continuity for CNN decoders is the
lightness change in each pixel and therefore when object with sharp
boundaries are used for training the WGAN-CNN, the generated results
are not continuous and broken. Blurring the dataset to imply
continuity is usually used. However, WGAN-IM can be trained well for
sharp and blurred versions, as lightness changes and shape
movements are continuous.




GANs

on (generation and cat Jackward irial training)

GENERATIVE
NETWORK

The downstream task of GANs is a discrimination task between true and generated
samples. Or we could say a “non-discrimination” task as we want the discrimination
to fail as much as possible. So, in a GAN architecture, we have a discriminator, that
takes samples of true and generated data and that try to classify them as well as
possible, and a generator that is trained to fool the discriminator as much as
possible.

Once defined, the two networks can then be trained jointly (at the same time) with

opposite goals:

e the goal of the generator is to fool the discriminator, so the generative neural
network is trained to maximise the final classification error (between true and
generated data). It takes as input a simple random variable and must return,
once trained, a random variable that follows the targeted distribution.

e the goal of the discriminator is to detect fake generated data, so the
discriminative neural network is trained to minimise the final classification error.
It takes as input a point (ie, a N dimensional vector) and returns as output the
probability of this point to be a “true” one.




IM-GAN

KL DIVERGENCE D-KL achieves the minimum Asymmetric
zero when p(x) == q(x)
everywhere.

JENSON-SHANNON Bounded by [0,1], Symmetric,

More smooth
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When using the shape feature vectors from IM-NET to train a latent GAN (one that
is trained on encoded vectors), we create the IM-GAN.

For 3D shape generation, we employed latent-GANs on feature vectors
learned by a 3D auto-encoder. We did not apply traditional GANs trained on
voxel grids since the training set is considerably smaller compared to the size
of the output. Therefore, the pre-trained AE would serve as a means for
dimensionality reduction, and the latent-GAN was trained on high-level
features of the original shapes. We used two hidden fully-connected layers for
both the generator and the discriminator, and the Wasserstein GAN loss with
gradient penalty.

WGAN:

Instead of using a discriminator to classify or predict the probability

of generated images as being real or fake, the WGAN changes or replaces

the discriminator model with a critic that scores the realness or

fakeness of a given image. Disadvantages of WGAN can be overcome to a
certain extent by using gradient penalty to the loss function, converges faster,

stable score. n



Structure

We assess and evaluate improvements made by the implicit decoder for
generative modeling of 3D shapes. We trained latent-GANs on both CNN-AE

and IM-AE to ob-tain CNN-GAN and IM-GAN.

The paper also details results obtained when compared with state-of-the-art
methods: PCGAN and 3DGAN. PCGAN uses generative point cloud methods.

CNN-GAN and IM-GAN are using the same latent-GAN structure.

Generator:

Layer Activation function
- (128)
fully-connected (128

TRAINING CONFIGURATION

e The networks were implemented with Tensorflow and using Adam

optimizer (learning_rate=5e-5, betal=0.5, beta2=0.999, epsilon=1e-

e For leaky RelLU, alpha=0.02.
e For batch normalization, decay=0.999, epsilon=1e-5.

)

e The training batch size is: 32 for 3D CNN-based models, 1 for implicit-

decoder-based models, 50 for latent-GANs.

e Notice that for implicit-decoder-based models, the batch size is one shape,
the actual batch size for implicit decoder varies according to the resolution

of the training data.




Results

IM-GAN generates shapes with better visual quality compared to other
methods, in particular, with smoother and more coherent surfaces. 3DGAN
appears to suffer from mode collapse on several categories, leading to lower
coverage. Point clouds generated by PC-GAN are recognizable but lack
detailed features; high-quality reconstruction from only 2048 generated
points would be challenging. In addition IM-GAN exhibits superior capability
in 3D shape interpolation.

(a) 3DGAN {d) CNN-GAN
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(b) PC-GAN

(¢) PC-GAN (reconstructed )

Quantitative results

e Light Field Descriptor captures radiance at a 3D point along a 2D direction.
The Light Field Descriptor (LFD) of a 3D shape is a set of 2D images of it,
taken from a 2D array of cameras
o 20 cameras positioned at the vertices of a regular dodecahedron.

e Suppose that we have a testing set G and a sample set A, for each shape in
A, we find its closest neighbor in G using LFD, say g, and mark g as
“matched”. In the end, we calculate the percentage of G marked as
“matched” to obtain the coverage score (COV-LFD) that roughly represents
the diversity of the generated shapes.

e However, a random set may have a high coverage, since matched shapes
need not be close. Therefore, we match every shape in G to the one in A
with the minimum distance and compute the mean distances in the
matching as Minimum Matching Distance(MMD-LFD). Ideally, a good
generative model would have higher COV-LFD and lower MMD-LFD values.




Results (IM-GAN)

Some results of chair and rifle dataset after running IM-GAN and rendering at
256x256x256 resolution with marching cubes algo.
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Results (IM-GAN)

Video Renderings are available on our github.




COV-LFD Plane Car Chair Rifle Table

CNN-GAN 22 | 73.00
IM-GAN

MMD-LFD Plane Car Chair Rifle Table

CNN-GAN
IM-GAN
Coverage does not indicate exactly how well the covered examples (point-
clouds) are represented in set A; matched examples need not be close. We
need a way to measure the fidelity of A with respect to B. To this end, we

match every point cloud of B to the one in A with the minimum distance
(MMD) and report the average of distances in the matching.

Generator: Error with Time

GAN COV-LFD%

Discrim.: Error with Time

Drawbacks

Also detailing further optimizations that can be utilized.

¢ Very long training time: CNN-AE is much faster, even in the case of
progressive training.

¢ Dissimilar Shapes: Cannot ensure a meaningful morph between highly
dissimilar shapes ie, from different ccategories.

e Low Frequency Errors: Like global thinning and thickening of meshes.




